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Abstract
Background and objectives Sodium-glucose transporter 2 (SGLT2) inhibitor–induced uric acid lowering may
contribute to kidney-protective effects of the drug class in people with type 2 diabetes. This study investigates
mechanisms of plasma uric acid lowering by SGLT2 inhibitors in people with type 2 diabetes with a focus on
urate transporter 1.

Design, setting, participants, & measurementsWe conducted an analysis of two randomized clinical trials. First,
in the Renoprotective Effects of Dapagliflozin in Type 2 Diabetes study, 44 people with type 2 diabetes were
randomized to dapagliflozin or gliclazide for 12 weeks. Plasma uric acid, fractional uric acid excretion, and
hemodynamic kidney function were measured in the fasted state and during clamped euglycemia or
hyperglycemia. Second, in the Uric Acid Excretion study, ten people with type 2 diabetes received 1 week of
empagliflozin, urate transporter 1 blocker benzbromarone, or their combination in a crossover design, and effects
on plasma uric acid, fractional uric acid excretion, and 24-hour uric acid excretion were measured.

Results In the Renoprotective Effects of Dapagliflozin in Type 2 Diabetes study, compared with the fasted state
(5.361.1 mg/dl), acute hyperinsulinemia and hyperglycemia significantly reduced plasma uric acid by 0.260.3
and 0.460.3 mg/dl (both P,0.001) while increasing fractional uric acid excretion (by 3.2%63.1% and 8.9%64.5%,
respectively; both P,0.001). Dapagliflozin reduced plasma uric acid by 0.860.8 during fasting, 1.061.0 in
hyperinsulinemic-euglycemic state, and 0.860.7 mg/dl during hyperglycemic conditions (P,0.001), respectively,
whereas fractional uric acid excretion in 24-hour urine increased by 3.0%62.1% (P,0.001) and 2.6%64.5% during
hyperinsulinemic-euglycemic conditions (P50.003). Fractional uric acid excretion strongly correlated to fractional
glucose excretion (r50.35; P50.02). In the Uric Acid Excretion study, empagliflozin and benzbromarone both
significantly reduced plasma uric acid and increased fractional uric acid excretion. Effects of combination therapy
did not differ from benzbromarone monotherapy.

Conclusions In conclusion, SGLT2 inhibitors induce uric acid excretion, which is strongly linked to urinary
glucose excretion and is attenuated during concomitant pharmacologic blockade of urate transporter 1.

Clinical Trial registry name and registration number: Renoprotective Effects of Dapagliflozin in Type 2 Diabetes
(RED), NCT02682563; SGLT2 Inhibition: Uric Acid Excretion Study (UREX), NCT05210517

CJASN 17: 663–671, 2022. doi: https://doi.org/10.2215/CJN.11480821

Introduction
Elevated concentrations of plasma uric acid are fre-
quently observed in people with type 2 diabetes and
are strongly associated with diabetes-related compli-
cations such as cardiovascular disease and CKD (1).
Plasma uric acid lowering has thus been explored as a
potential treatment to halt the increasing prevalence
of diabetic kidney disease (2). However, recent trials
failed to show a benefit on kidney outcomes of lower-
ing uric acid formation with the xanthine oxidase
inhibitor allopurinol in people with either type 1 dia-
betes (3) or type 2 diabetes (4). Nevertheless, there are
limited data on sodium-glucose cotransporter 2

(SGLT2) inhibitors, which have been ascribed kidney-
protective effects in part due to plasma uric acid low-
ering as indicated in mediation analyses (5,6).
SGLT2 inhibitors are glucose-lowering drugs that

block tubular glucose reabsorption, thereby inducing
glycosuria (7). They have been shown to improve
hard kidney outcomes in patients with CKD with and
without diabetes (8–10). Previous studies have dem-
onstrated that in contrast to allopurinol, SGLT2 inhibi-
tors do not reduce uric acid production, but rather
augment its excretion (11). The exact mechanisms by
which SGLT2 inhibitors increase uric acid excretion
are still unknown, but they are proposed to not be
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mediated by a direct result of SGLT2 inhibitors’ effects on
tubular urate transporters (12,13). Instead, rodent studies
suggest that SGLT2 inhibitor–induced glycosuria may
drive uric acid excretion at least in part by inhibiting the
activity of urate transporter 1 (URAT1) (13), a transporter
located at the apical surface of kidney tubular cells and
implicated in a significant portion of kidney uric acid reab-
sorption (14).
This study aims to investigate the uricosuric effect of

SGLT2 inhibition in people with type 2 diabetes and pre-
served kidney function and to determine the relationship
with the excretion of other metabolites and electrolytes. In
addition, to study the role of URAT1, we conducted a
mechanistic trial using SGLT2 inhibition with empagliflo-
zin, direct URAT1 blockade with benzbromarone, and their
combination.

Materials and Methods
This paper includes data from two randomized clinical

trials: the Renoprotective Effects of Dapagliflozin in Type 2
Diabetes (RED) and the Uric Acid Excretion (UREX) study
trials. Both studies were performed at the Amsterdam Uni-
versity Medical Centers, Location VU Medical Center,
Amsterdam, The Netherlands. Participants were recruited
from existing databases and advertisements in local news-
papers. The study protocols and all protocol-specific docu-
ments were reviewed and approved by the ethics review
board of the VU University Medical Center (Amsterdam,
The Netherlands), and written informed consent was
obtained from all participants before any trial-related activ-
ity. The studies complied with the Declaration of Helsinki
and Good Clinical Practice guidelines.

The Renoprotective Effects of Dapagliflozin in Type 2
Diabetes Study
Study Design and Population. The RED study was a

randomized, double-blind, comparator-controlled interven-
tion trial designed to assess the hemodynamic effects of 12
weeks of the SGLT2 inhibitor dapagliflozin compared with
the sulfonylurea gliclazide. This analysis concerns a prespe-
cified analysis. The trial protocol has been published previ-
ously (15) and is described in further detail in the
Supplemental Appendix. Eligible participants were men or
postmenopausal women aged between 35 and 75 diagnosed
with type 2 diabetes with HbA1c between 7% and 9% and
body mass index .25 kg/m2 (15). All participants were
treated with metformin monotherapy at a stable dose for#3
months. BP was under control (i.e., ,140/90 mm Hg), and
macroalbuminuria (i.e., ACR .300 mg/g) was not allowed;
in the case of previously diagnosed hypertension and/or
albuminuria, treatment included at least a stable dose of a
renin-angiotensin system inhibitor for$3 months.
Randomization, Intervention, and Outcome Measure-

ments. Participants were randomly assigned to dapagliflo-
zin 10 mg daily or gliclazide 30 mg daily using encapsulated
tablets (Supplemental Figure 1A); participants and investi-
gators remained blinded until database lock. Primary
end points (measured at baseline and week 12 of treatment)
were iohexol-measured GFR and para-aminohippuric
acid–measured effective renal plasma flow in the fasted

state and during clamped euglycemia and hyperglycemia
(Supplemental Figure 1B). Measurement of plasma uric acid
was a prespecified end point. The complete study methods
are provided in the Supplemental Appendix.

The Uric Acid Excretion Study
Study Design and Population. The UREX study was an

open-label, randomized, crossover intervention study that
investigated 1-week mono- and combination therapy with
the URAT1 inhibitor benzbromarone and the SGLT2 inhibi-
tor empagliflozin on plasma uric acid and fractional excre-
tion of uric acid (FE-UA). To investigate the role of URAT1
in SGLT2-induced glycosuria, benzbromarone was used to
inhibit the activity of the URAT1 transporter. Eligible par-
ticipants met the same criteria as those in the RED study
with two exceptions: a combination of metformin and low-
dose sulfonylurea derivative as glucose-lowering therapy
was allowed, and a history of gout was added to the exclu-
sion criteria. No participants included in the studies used
other uric acid–lowering agents.

Randomization, Intervention, and Outcome Measure-
ments. The study started with a 4-week run-in period fol-
lowed by a baseline visit. Hereafter, participants were
treated for 1 week with the SGLT2 inhibitor empagliflozin
25 mg once daily, benzbromarone 100 mg once daily, or
empagliflozin 25 mg once daily plus benzbromarone 100
mg once daily in a random order (Supplemental Figure
1C). Treatment periods were separated by a 4-week wash-
out period. Primary outcome measurements were plasma
uric acid and FE-UA. A detailed description of the study
protocol is presented in the Supplemental Appendix.

Statistical Analyses and Post Hoc Outcome Measures.
Outcome measures of this prespecified post hoc analysis
consist of plasma uric acid levels and FE-UA levels.

Data on demographics are presented as mean 6 SD if
normally distributed and median (interquartile range) for
positively skewed variables. Continuous variables were
tested for distribution and log transformed in the case of
positively skewed variables.

For the RED study, different states were compared using
a repeated measure ANOVA, or in the case of non-normal
distribution, by using a Friedman test. Variables that corre-
lated with plasma uric acid were included in a multivari-
able linear regression to adjust for potential confounders,
including age, sex, body mass index, and hemodynamic
kidney function. Within-group comparisons of treatment
effects were analyzed using paired t tests or Wilcoxon
signed rank tests. The sample size of the RED study was on
the basis of the expected between-group difference in mea-
sured GFR (mGFR) using Stata version 11 (Breda, The
Netherlands) as previously described (15). For the UREX
study, to assess differences between groups, paired t tests
or Wilcoxon signed rank tests were applied. A linear mixed
model analysis was used to compare the outcome between
baseline and treatments. The model included a random
intercept for participants to take into account the depen-
dency of the observations within one participant. D is pre-
sented as mean difference 6 SEM.

Sample size for the UREX study was calculated as fol-
lows. We expected an SGLT2 inhibitor–induced reduction
in fasting plasma uric acid from 5.4 to 4.5 mg/dl with an
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SD of 0.8 mg/dl; with a two sided at 0.05 and a power of
0.80, ten participants needed to be included given within-
individuals comparisons. All analyses were performed
using SPSS version 26.0, and statistical significance was
defined at a two-tailed P value of 0.05. Figures were created
using GraphPad Prism version 9.1.0.

Results
Population Characteristics
In this analysis, a total of 54 participants treated with

SGLT2 inhibitors were included, of which 44 were RED
study participants and ten were UREX study participants.
Participants were predominantly overweight men with
well-controlled type 2 diabetes and preserved kidney func-
tion. Detailed baseline characteristics are shown in Table 1.

The Renoprotective Effects of Dapagliflozin in Type 2
Diabetes Study
Clamp Procedure. On average, participants of the RED

study had fasting glucose concentrations of 162692 g/ml,
which were decreased to 11069 mg/ml during the
hyperinsulinemic-euglycemic state and increased to
339636 mg/ml in the hyperglycemic state of the clamps
(Figure 1A).
The mean fasting insulin concentration was 967 mIU/ml,

and it increased during steady state and urine collec-
tion to 79619 mIU/ml during the hyperinsulinemic-
euglycemic state (Figure 1B). In the hyperglycemic state,

insulin concentrations averaged 40640 mIU/ml during the
urine collection periods. The mean glucose infusion rate
to maintain plasma glucose concentrations at 90 mg/ml
during the hyperinsulinemic-euglycemic clamp was
663 mg�kglean/min (M value).

Baseline Uric Acid Handling. Plasma uric acid concen-
trations of the total population were at the higher end of the
normal range in most participants and were highest during
fasting conditions: 5.361.1 mg/dl. They were reduced dur-
ing hyperinsulinemic-euglycemic (from 5.361.06 to 5.161.0
mg/dl; P,0.001) and hyperglycemic (to 4.960.9 mg/dl;
P,0.001) conditions (Figure 1C). FE-UA was lowest during
fasting conditions (5.1%62.5%) and increased by euglyce-
mic hyperinsulinemia (to 8.3%63.6%; P,0.001) and by
hyperglycemia (to 14.1%64.8%; P,0.001) (Figure 1D). As
depicted in Figure 1E, the fractional excretion of glucose
(FE-Gluc) increased in the hyperglycemic state (24%610%).
The fractional excretion of sodium was lowest during fast-
ing conditions (0.7%60.2%) and increased significantly in
the hyperinsulinemic-euglycemic (to 1.2%60.6%; P,0.001)
and hyperglycemic (to 1.6%60.7%; P,0.001) states (Figure
1F). In line, plasma uric acid was inversely associated with
24-hour urinary FE-Gluc (Figure 2A). In parallel, 24-hour
urinary FE-UA was positively associated with 24-hour uri-
nary FE-Gluc (Figure 2B) as well as 24-hour fractional excre-
tion of sodium (Figure 2C). Plasma insulin concentration or
insulin sensitivity (M value) was not related to plasma uric
acid or FE-UA.

Table 1. Baseline characteristics of the Renoprotective Effects of Dapagliflozin and Uric Acid Excretion studies

Variable UREX, n510
RED, n544

Dapagliflozin, n524 Gliclazide, n520

Clinical characteristics
Age, yr 6768 6367 65 (8)
Men, N (%) 6 (60) 17 (71) 17 (85)
Height, cm 174612 177610 176610
Body mass index, kg/m2 27 (9) 3164 3264
eGFR, ml/min per 1.73 m2 88 (11) 84 (24) 89 (22)
RAS inhibitor use, N (%) 5 (50) 16 (67) 16 (80)
ACE inhibitor, N (%) 3 (30) 5 (21) 5 (25)
ARB, % 2 (20) 11 (46) 11 (55)
HbA1c, % 7.060.7 7.3 (0.8) 7.460.6
HbA1c, mmol/mol 5368 56 (9) 5767
Fasting plasma glucose, mg/dl 135 (41) 166627 157629
Fasting insulin, mIU/ml — 1068 863
Plasma uric acid, mg/dl 5.360.9 5.561.2 5.260.9
Fractional uric acid excretion, % 5.660.7 5.562.3 4.762.8

Systemic hemodynamic function
Heart rate, beats/min 71612 69610 65611
Systolic BP, mm Hg 137614 134611 137615
Diastolic BP, mm Hg 83610 8367 8364

Kidney hemodynamic function
GFR, ml/min 1.73 m2 90610 89619
Effective blood flow, ml/min per 1.73 m2 10646362 11616226
Effective plasma flow, ml/min per 1.73 m2 6546153 6916119
Filtration fraction, % 17.862.9 16.461.8
Vascular resistance, mm Hg/ml per min 0.1060.03 0.0960.02
Glomerular pressure, mm Hg 60.664.5 60.265.8
Afferent resistance, dyn�s/cm5 326761337 27596964
Efferent resistance, dyn�s/cm5 21006440 19266251

UREX, Uric Acid Excretion study; RED, Renoprotective Effects of Dapagliflozin study; RAS, renin-angiotensin system; ACE,
angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; HbA1c, hemoglobin A1c.

CJASN 17: 663–671, May, 2022 SGLT2 Inhibitors on Uric Acid Handling, Suijk et al. 665
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Effect of Dapagliflozin on Kidney Uric Acid Handling.
In participants treated with dapagliflozin, plasma uric acid
decreased in fasting conditions from 5.561.1 to 4.661.0
mg/dl (P,0.001), during hyperinsulinemic-euglycemic
condition from 5.261.1 to 4.261.1 mg/dl (P,0.001),
and during hyperglycemia from 5.060.9 to 4.260.9 mg/dl
(P,0.001) (Figure 3, A–C). In individuals treated with
gliclazide, plasma uric acid increased significantly in the

fasting state from 5.260.9 to 5.660.9 mg/dl (P50.02) and
during hyperinsulinemic-euglycemic condition from 5.060.9
to 5.460.9 mg/dl (P50.02), whereas it did not change dur-
ing hyperglycemic conditions (Figure 3, A–C). Change in
plasma uric acid concentrations after 12 weeks of treatment
differed significantly between dapagliflozin and gliclazide
treatment during fasting, euglycemic, and hyperglycemic
conditions (Figure 3D) (P,0.001 for all). The 24-hour urinary
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Figure 1. | Metabolic parameters and uric acid handling during clamp. Uric acid, insulin, and glucose handling at baseline. (A) Blood glu-
cose. (B) Blood insulin. (C) Plasma uric acid. (D) Fractional excretion of uric acid. (E) Fractional excretion of glucose. (F) Fractional excre-
tion of sodium. Data are mean 6 SD.
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FE-UA increased significantly after treatment with dapagli-
flozin from 5.5%62.3% to 8.5%62.6% (P,0.001); it
increased from 8.2%62.6% to 10.8%64.3% (P50.003) during
hyperinsulinemic-euglycemic conditions, whereas it did not
change during hyperglycemic conditions (14.3%63.1% to
13.0%63.3%; P50.16) (Figure 3, E–G). Individuals treated
with gliclazide did not show any difference in FE-UA after
treatment. Change in FE-UA concentrations after 12 weeks
of treatment differed significantly between dapagliflozin
and gliclazide under all conditions (P,0.001) (Figure 3H).
During hyperglycemia, FE-UA decreased with dapagliflozin
compared with gliclazide. After 12 weeks of treatment with

dapagliflozin, FE-UA was positively associated with
FE-Gluc (r50.44; P,0.001).

The Uric Acid Excretion Study
Plasma uric acid at baseline was 5.360.9 mg/dl and

reduced by 1.060.4 mg/dl with empagliflozin (P50.02), by
3.560.4 mg/dl with benzbromarone (P,0.001), and by
3.160.4 mg/dl with empagliflozin and benzbromarone
combination therapy (P,0.001) (Figure 4A). In parallel,
FE-UA increased from baseline 5.6%62.5% by 5.063.3 with
empagliflozin (P50.04), by 18.863.3 with benzbromarone
(P,0.001), and by 17.163.3 with their combination
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(C) Plasma uric acid levels during hyperglycemia. (D) Within-group change in plasma uric acid. (E) Fractional excretion of uric acid levels
derived from 24-hour urine samples. (F) Fractional excretion of uric acid levels during hyperinsulinemic euglycemia. (G) Fractional excre-
tion of uric acid levels during hyperglycemia. (H) Within-group change from baseline in fractional excretion of uric acid. Data are mean
6 SD. NS, not significant.
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of uric acid. Data are mean 6 SD. NS, not significant.
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(P,0.001) (Figure 4B). No significant difference was found
between benzbromarone monotherapy and combination
therapy for plasma uric acid concentrations (P50.18) and
FE-UA (P50.44).

Discussion
In this paper, we demonstrate that SGLT2 inhibitors

decrease plasma uric acid concentrations by accentuating
urinary uric acid excretion, which is linked to urinary
excretion of both glucose and sodium. Additionally, we
show that the uricosuric effect of the SGLT2 inhibitor
empagliflozin is no longer present when the tubular trans-
porter URAT1 is pharmacologically blocked.
SGLT2 inhibitors were recently shown to have kidney-

protective effects in people with CKD with or without type
2 diabetes (9,10,16). However, the mechanisms by which
SGLT2 inhibitors improve kidney outcomes remain incom-
pletely understood, with multiple mechanisms proposed
(16,17). These potential mechanisms are not reviewed here
but elsewhere (16). SGLT2 inhibitor–induced plasma uric
acid reductions (5) contribute to improved kidney out-
comes according to a mediation analysis of the CREDENCE
trial (6). Interestingly, part of the kidney-protective effects
of the angiotensin II receptor blocker losartan has previ-
ously been related to plasma uric acid reductions (18). The
observation that lowering plasma uric acid contributes to
kidney outcomes during SGLT2 inhibitor usage is interest-
ing, as the clinical significance of plasma uric acid lowering
was questioned recently. On one hand, plasma uric acid
has been strongly associated with both incidence and pro-
gression of CKD (2). In preclinical and mechanistic studies
in humans, plasma uric acid has been linked to glomerular
hypertension and damage as well as tubular injury second-
ary to the formation of urate crystals (19–23). On the other
hand, despite suggestions of positive effects in earlier and
smaller trials (2), recent large-sized trials in people with
type 1 diabetes (the PERL study) (3) and in people with
CKD (the CKD-FIX study) (4) did not show a kidney-
protective effect when plasma uric acid concentrations
were reduced by blocking urate formation with allopurinol.
The PERL study examined the plasma uric acid–lowering
effect of allopurinol on mGFR in patients with type 1 diabe-
tes and early diabetic kidney disease and did not find evi-
dence for benefits on kidney outcomes, including mGFR,
mGFR slopes, or urinary albumin excretion (3). The CKD-
FIX study investigated the effects of allopurinol on progres-
sion of kidney disease in people with CKD stages 3 and 4
with or without diabetes, and likewise, allopurinol did not
show effects on eGFR compared with placebo (4). How-
ever, the CKD-FIX study was underpowered with 369
included patients, and participants in these trials did not
exhibit significant hyperuricemia. Another explanation for
the neutral effects of xanthine oxidase inhibition on kidney
outcomes may be that other harmful metabolites in the uric
acid pathway accumulate when this enzyme is inhibited.
Accumulation of these metabolites by allopurinol could be
responsible for continuous kidney damage, despite lower-
ing plasma uric acid. It is tempting to speculate that
enhancing uric acid excretion could lead to different
results. In line, inhibiting uric acid reabsorption with the

URAT1 blocking agent verinurad, in combination with the
xanthine-oxidase inhibitor febuxostat, showed a nearly
50% attenuation in albuminuria in 60 patients with type 2
diabetes (24). Larger trials are necessary to determine the
kidney-protective potential of uricosuric agents.

The tubular transport of uric acid is complex and
remains incompletely understood. Two tubular transport-
ers are currently considered to play a critical role in uric
acid reabsorption in the kidney: URAT1 and the glucose
transporter GLUT9. URAT1 has previously been identified
as a uric acid reabsorption transporter in the apical mem-
brane of the proximal tubule. In patients with idiopathic
hypouricemia, inactivation mutations of URAT1 were
found (25,26), and URAT1 blockers indeed enhance uric
acid excretion. On the other hand, data also suggest that in
the absence of URAT1, uric acid reabsorption still occurs,
implicating additional transport mechanisms (27). GLUT9,
a glucose transporter expressed on both the apical and
basolateral membrane of the proximal tubule, contributes
to tubular uric acid reabsorption. Loss-of-function muta-
tions in the GLUT9 gene decrease urate transport and
induce hypouricemia within the kidney (27,28).

Higher tubular glucose concentrations and glucosuria
have been associated with increased uric acid excretion and
lowering of plasma uric acid (29,30). We demonstrate that
induction of acute hyperglycemia during the hyperglyce-
mic clamp results in an increase in urinary glucose excre-
tion associated with an increase in uric acid excretion. This
is in line with a previous study showing that induction of
hyperglycemia increases urinary glucose and uric acid
excretion in patients with type 1 diabetes (11). SGLT2 inhib-
itors may lower plasma uric acid by making use of this
mechanism. Several studies have shown clear associations
between urinary glucose and uric acid excretion during
SGLT2 inhibition, where tubular glucose levels may com-
pete with reabsorption of uric acid at the level of GLUT9,
thereby enhancing its excretion (11,12). Despite this pro-
posed role for GLUT9, a recent study in rodents demon-
strated intact plasma uric acid–lowering effects of SGLT2
inhibitor canagliflozin in mice with kidney-specific GLUT9
knockout. Moreover, the SGLT2 inhibitor enhanced mRNA
expression of GLUT9 in wild-type mice within the kidney,
potentially to compensate for the uricosuric effect, but
tubular GLUT9 was dispensable for the increase in FE-UA
in response to canagliflozin (13). In contrast, SGLT2 inhibi-
tion did not enhance uric acid excretion in mice lacking
URAT1 (13). Thus, we built upon this observation by inves-
tigating the effects of SGLT2 inhibition in the presence of
pharmacologic URAT1 blockade using benzbromarone. As
expected, benzbromarone monotherapy resulted in
decreased plasma uric acid and increased urinary uric acid
excretion. During combination therapy of empagliflozin-
benzbromarone, the uric acid–lowering effects of empagli-
flozin were attenuated, despite tubular hyperglycemia. We
cannot deduce from our data the precise role of URAT1 in
this regard, which needs to be addressed in preclinical and,
perhaps, rodent studies.

In addition to glucose, urinary sodium excretion has pre-
viously been related to urinary uric acid excretion (31). Vice
versa, high plasma uric acid concentrations were reported to
be independently associated with increased tubular sodium
reabsorption (32). In this study, we demonstrate the
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association between sodium excretion and uric acid excre-
tion in 24-hour urine, in line with previous findings. Insulin
has earlier been described as another contributing factor in
the excretion of uric acid, with hyperinsulinemia inducing
uric acid retention in obese, insulin-resistant patients with-
out diabetes (33), and insulin has been proposed to stimu-
late uric acid reabsorption via regulating URAT1 in rodents
(34). However, in our study, insulin infusion induced a
reduction in plasma uric acid by enhancing uric acid excre-
tion. Furthermore, we did not observe a link between
plasma insulin concentrations, insulin sensitivity, and
plasma uric acid or urinary uric acid excretion. Therefore,
the role of insulin in uric acid metabolism in people with
hyperglycemia may be different than in people with insulin
resistance without overt hyperglycemia.
Our studies have limitations worth mentioning. Although

we had sufficient power for these end points, both studies
had a relatively small sample size. Additionally, partici-
pants were well-controlled patients on oral glucose-
lowering agents with preserved kidney function and uric
acid concentrations in the upper end of the normal range.
This limits the generalizability of our data. Another limita-
tion includes the open-label study design of the UREX
study. Additionally, we only tested one dose of both drugs,
and although both drugs might have a different affinity for
its receptor, higher doses might lead to different results.
However, both drugs were used in their common clinical
dose. Furthermore, although we show that pharmacologic
URAT1 blockade mitigates the effects of tubular hypergly-
cemia on uric acid excretion, the precise role of URAT1 inhi-
bition remains to be studied in dedicated animal studies.
Finally, dietary intake, including purine content, was not
taken into account for both studies, although excretion of
uric acid was similar between patients at baseline, which
suggests that these differences are likely modest.
In conclusion, in people with type 2 diabetes and pre-

served kidney function, SGLT2 inhibition induces a urico-
suric effect linked to urinary glucose excretion attenuated
by concomitant pharmacologic URAT1 regulation.
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