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Objectives: Early detection of sepsis is critical in clinical practice 
since each hour of delayed treatment has been associated with an 
increase in mortality due to irreversible organ damage. This study 
aimed to develop an explainable artificial intelligence model for 
early predicting sepsis by analyzing the electronic health record 
data from ICU provided by the PhysioNet/Computing in Cardi-
ology Challenge 2019.
Design: Retrospective observational study.
Setting: We developed our model on the shared ICUs publicly 
data and verified on the full hidden populations for challenge 
scoring.
Patients: Public database included 40,336 patients’ electronic 
health records sourced from Beth Israel Deaconess Medical 
Center (hospital system A) and Emory University Hospital (hos-
pital system B). A total of 24,819 patients from hospital systems 
A, B, and C (an unidentified hospital system) were sequestered 
as full hidden test sets.
Interventions: None.
Measurements and Main Results: A total of 168 features were 
extracted on hourly basis. Explainable artificial intelligence sepsis 
predictor model was trained to predict sepsis in real time. Impact 
of each feature on hourly sepsis prediction was explored in-depth 
to show the interpretability. The algorithm demonstrated the final 
clinical utility score of 0.364 in this challenge when tested on the 
full hidden test sets, and the scores on three separate test sets 
were 0.430, 0.422, and –0.048, respectively.
Conclusions: Explainable artificial intelligence sepsis predictor 
model achieves superior performance for predicting sepsis 
risk in a real-time way and provides interpretable information 
for understanding sepsis risk in ICU. (Crit Care Med 2020; 
48:e1091–e1096)

Key Words: artificial intelligence; intensive care unit; PhysioNet 
challenge; prediction; sepsis 

Sepsis is a serious complication of infection in emergency 
department and represents a major cause of maternal 
and neonatal morbidity and mortality (1). Reliable and 

early detection of sepsis is clinically important, facilitating the 
active antibiotic therapy and fluid resuscitation (2–4). Artifi-
cial intelligence (AI) algorithms have been adopted in learn-
ing electronic health record (EHR) data for early detection of 
sepsis or septic shock (5–8). However, interpretability for the 
developed models faces a difficulty in clinic, resulting in the 
poor practicality for clinical decision support.

The PhysioNet/Computing in Cardiology (CinC) Challenge 
2019 addressed this issue and promoted the development of 
open-source AI algorithms for real-time and early detection of 
sepsis (9). In this study, we trained an explainable AI sepsis pre-
dictor (EASP) to predict sepsis risk hour-by-hour and focused 
on its interpretability for the clinical EHR data sourced from 
ICU patients. The EASP model was verified on the full hidden 
test data from separate hospital systems.

METHODS

Data and Features
Data were retrieved from the PhysioNet/CinC Challenge 2019 
(9), which provided a total of 40,336 patients’ EHR data (2,932 
septic and 37,404 nonseptic) from three separate hospital sys-
tems for public, as well as a hidden test set from 24,819 patients. 
We randomly split 85% of the public data (34,285 patients, 
2,492 septic and 31,793 nonseptic) for algorithm development 
and 15% (6,051 patients, 440 septic and 5,611 nonseptic) for 
validation (Table 1).

All raw variables were used as input features (total 37) of 
model except three ones (direct bilirubin, troponin I, and fi-
brinogen), due to their massive missing values. One hundred 
thirty-one features were derived from the raw variables and 
were classified as three subtypes: 62 informative missingness 
features reflecting measurement frequency or time interval of DOI: 10.1097/CCM.0000000000004550
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TABLE 1. Characteristics of Population for Algorithm Development and Validation

Characteristics

Development Population

 pa

Validation Population

 

pa
Septic  

(n = 2,492)
Nonseptic  

(n = 31,793)
Septic  

(n = 440)
Nonseptic  
(n = 5,611)

Age, median (IQR), yr 64 (52–73) 63 (51–74) 0.14 63 (50–75) 63 (51–74) 0.61

Male, % 59.0 55.7 < 0.01 60.9 55.4 < 0.01

ICU length of stay (hours  
since ICU admit),  
median (IQR), hr

38 (15–82) 39 (25–47) < 0.01 39 (17–82) 39 (25–47) < 0.05

Hours between hospital  
admit and ICU admit, 
median (IQR), hr

–2.6  
(–63.7 to 0.0)

–6.2  
(–42.2 to –0.1)

< 0.01 –4.9  
(–86.2 to 0.0)

–6.4  
(–43.0 to –0.1)

0.85

Administrative identifier  
for ICU unit, n (%)

  < 0.01   < 0.01

 Unit 1 (medical ICU) 833 (33.4) 9,608 (30.2)  133 (30.2) 1,693 (30.2)  

 Unit 2 (surgical ICU) 550 (22.1) 9,990 (31.4)  100 (22.7) 1,812 (32.3)

 Unidentified 1,109 (44.5) 12,195 (38.4)  207 (47.1) 2,106 (37.5)

IQR = interquartile range. 
a Statistical analyses using a χ2 for binary variables and the Wilcoxon rank-sum test for all continuous variables. p values < 0.05 were considered significant. 

TABLE 2. Top 20 Features Contributing to Prediction and Corresponding Impact

Features Description Type Impact

ICULOS ICU length of stay (hr) R 0.2718

HospAdmTime Time between hospital and ICU admission (hr) R 0.2219

Temp Temperature (°C) R 0.2182

Fio2 Fraction of inspired oxygen (%) R 0.2065

FIo2_interval Measurement interval of FIo2 (hr) D1 0.1657

Lactate Lactic acid (mg/dL) R 0.1196

WBC Leukocyte count (count/L) R 0.1091

Creatinine Creatinine (mg/dL) R 0.1052

Unit1 Medical ICU (0/1) R 0.0967

BUN Blood urea nitrogen (mg/dL) R 0.0817

HR_frequency Measurement frequency of heart rate D1 0.0779

Alkalinephos Alkaline phosphatase (IU/L) R 0.0772

MAP_window_mean Mean of mean arterial pressure in a 6-hr window (mm Hg) D2 0.0738

HR_window_max Maximum of heart rate in a 6-hr window (beats/min) D2 0.0716

SBP_window_diffstd sd after first difference of systolic blood pressure in a 6-hr window (mm Hg) D2 0.0651

PTT Partial thromboplastin time (s) R 0.0577

Resp_window_mean Mean of respiration rate in a 6-hr window (breaths/min) D2 0.0564

Etco2 End-tidal carbon dioxide (mm Hg) R 0.0555

HR Heart rate (beats/min) R 0.0535

Temp_diff Difference between the current record and last temperature (°C) D2 0.0527

D = derived features and D1, D2 represent informative missingness, time series features, respectively, R = raw features.
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raw variables (10), 61 time series features including the differ-
ences between the current record and the previous value, statis-
tics (maximum, minimum, mean, median, sd and differential 
sd) in a 6-hour sliding window for the selected measurements 
(heart rate [HR], pulse oximetry, systolic blood pressure [SBP], 
and respiration rate [Resp]), and eight empiric features scoring 
for HR, SBP, mean arterial pressure, Resp, temperature, cre-
atinine, platelets, and total bilirubin according to the scoring 
systems of NEWS (11), Sequential Organ Failure Assessment 
(SOFA) (12) and quick SOFA (12). Thus, a total of 168 features 
were obtained. Missing values used a forward-filling strategy.

Algorithm Design
A high performance gradient-boosting-trees model, that is, 
XGBoost (13), was applied to train the model since its support-
ing for flexible and complex nonlinear learning. K-fold cross 
validation (K = 5) was implemented during training, and five 
XGBoost models were produced. Ensemble approach by aver-
aging prediction risks from the five models was used for robust 
determination. Model variables were tuned using a Bayesian 
optimizer (14). Impacts of features on risk output were quan-
tified by Shapley values (15) to obtain instant interpretability 
for the developed EASP model. Shapley value was computed 

Figure 1. Summary of impact for the employed features. A, Overall impacts of the top 20 features. B, Beeswarm plots show feature impacts across all 
patients for the top 20 features where each dot indicates the impact of feature for 1-hr sample. Gray dots refer to unfilled missing values. When multiple 
dots fall on the same x position, they are stacked to show density. Features with positive impact values push the sepsis risk higher, whereas negative 
push the risk lower. Long tails indicate features are extremely important for specific patients. C, Overall impacts of all 168 features from highest to lowest. 
D, Overall impacts of the four different feature types. Alkalinephos = alkaline phosphatase, BUN = blood urea nitrogen, Etco2 = end-tidal carbon dioxide, 
HospAdmTime = hours between hospital admit and ICU admit, HR_frequency = measurement frequency of heart rate, HR_window_max = maximum of 
heart rate in a 6-hr window, LOS = length-of-stay, MAP_window_mean = mean of mean arterial pressure in a 6-hr window, PTT = partial thromboplastin 
time, Resp_window_mean = mean of respiration rate in a 6-hr window, SBP_window_diffstd = sd after first difference of systolic blood pressure in a 6-hr 
window, Temp = temperature, Temp_diff = difference between the current record and last temperature.
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as the change in the expected risk output when a specific fea-
ture was versus missing, and it reflected the impact of the cur-
rent feature on an hourly sepsis risk prediction. Method for 
fast estimating Shapley values can refer to (16). Averaging the 
magnitude of the impacts across all patients shows the overall 
importance of a specific feature.

Open-source code implementation of this algo-
rithm in Python is available online at https://github.com/
Meicheng-SEU/EASP.

Algorithm Evaluation
Hourly data that triggered a fixed risk threshold in the 
EASP model would be identified as a positive prediction 
for sepsis. A clinical utility score defined by the challenge 
organizers was used as evaluation index (9). Traditional 
index of area under the curve (AUC) was also calculated 
for evaluating all the hourly predictions across all patients. 
In addition, we referred to the patients as positive cases if 
they were detected developing sepsis during their ICU stay 
and negative cases if not. Therefore, the septic/nonseptic 
predictions for all patients were identified, and the indices 
of sensitivity and specificity for patients’ detection were 
also reported.

RESULTS
Characteristics from validation populations are clinically sim-
ilar to those from development populations (Table 1). EASP 
model yielded the AUC of 0.85 for totally 233,835 hourly 
predictions in validation set. When optimizing sepsis risk 
threshold as 0.525 (optimized between 0.4 and 0.6), EASP 
model achieved a utility score of 0.430. For patients’ statistics, 
we correctly detecting 395 septic patients (sensitivity = 0.90) 
while falsely identifying 2,034 nonseptic patients as septic 
(specificity = 0.64). The top 20 most important features for 
sepsis prediction were summarized in Table 2, with visible 
explanations across all patients in Figure 1. Raw features con-
tributed the highest overall impact (total 0.54), followed by 
time series features (0.25), informative missingness features 
(0.20), and empiric features (0.01).

Finally, EASP model yielded the highest utility score of 
0.364 in the PhysioNet/CinC Challenge 2019 when tested on 

the full hidden test sets, with utility scores of 0.430, 0.422, and 
–0.048 for the three separate test sets (Table 3).

DISCUSSION
An explainable EASP model for early detection of sepsis was 
proposed. Reliable sepsis prediction using AI models with 
quantitative and explainable risk factors is important for 
medical decision support (16) and is in urgent need by cli-
nician (22). In previous studies, Rosnati et al (23) proposed 
a deep learning model and added attention mechanism to 
present feature importance, but it is not suitable for real-
time sepsis prediction. Nemati et al (24) used a modified 
regularized Weibull-Cox analysis and calculated hourly im-
portance of each feature. However, they do not capture the 
model’s overall behavior. The developed EASP can inform 
important variables contributing to the model prediction, 
and the utility score (i.e., model performance) on valida-
tion set would decrease from 0.430 to 0.399 when the top 
20 variables were masked. In addition, it can help doctors 
to gain insight into how risk prediction score varies accord-
ing to the contribution from all features in real time. Figure 
2 demonstrates its interpretability for the clinical data. The 
main risk indicators as shown in Figure 2 including temper-
ature, Fio

2
, lactate, etc, providing a real-time interpretation 

for the sepsis risk. Furthermore, extending analysis of the 
input features’ impact on all hourly predictions can capture 
their potential interaction effects (16) (examples see Supple-
mental Fig. 1, Supplemental Digital Content 1, http://links.
lww.com/CCM/F726).

Limitations should be mentioned. One limitation is the alert 
fatigue. In validation populations, about 75% of sepsis predic-
tions in true positive patients were penalized when calculating 
the utility score. In addition, nearly 36% nonseptic patients 
were falsely predicted as septic. An effective false alarm rejec-
tion mechanism should be developed in future work. Another 
limitation lies in that EASP performed well on two hidden test 
sets but not on the third one. Thus, enhancing its generaliza-
bility also need.

To conclude, this study demonstrates the proposed EASP 
model could achieve superior performance in the challenge 
when predicting sepsis risk in a real-time way. EASP can also 

TABLE 3. Top Utility Score Teams in the PhysioNet/Computing in Cardiology Challenge 
2019

References Final Utility Score Score A Score B Score C

Yang et al (17)a 0.364 0.430 0.422 –0.048

Morrill et al (18) 0.360 0.433 0.434 –0.123

Du et al (19) 0.345 0.409 0.396 –0.042

Guan (20)b 0.340 0.422 0.410 –0.166

Zabihi et al (21) 0.339 0.422 0.395 –0.146
a Our team as an unofficial entry. 
b Unofficial entry.
Scores A, B, and C are utility scores on each of the test sets from hospital systems A, B, and C.

https://github.com/Meicheng-SEU/EASP
https://github.com/Meicheng-SEU/EASP
http://links.lww.com/CCM/F726
http://links.lww.com/CCM/F726
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provide interpretable information for improving clinical un-
derstanding of sepsis risk in ICU.

Supplemental digital content is available for this article. Direct URL citations 
appear in the printed text and are provided in the HTML and PDF versions 
of this article on the journal’s website (http://journals.lww.com/ccmjournal).

Supported, in part, by the Distinguished Young Scholars of Jiangsu Prov-
ince (BK20190014), the National Natural Science Foundation of China 

(81871444), the Key Research & Development Plan of Ministry of science 
and technology (2017YFB1303200), and the Primary Research & Devel-
opment Plan of Jiangsu Province (BE2017735).

Dr. Chengyu Liu received support from the Distinguished Young Schol-
ars of Jiangsu Province (BK20190014), the National Natural Science 
Foundation of China (81871444). Dr. Li received support from the Key 
Research & Development Plan of Ministry of Science and Technology 
(2017YFB1303200) and the Primary Research & Development Plan of 
Jiangsu Province (BE2017735). The remaining authors have disclosed 
that they do not have any potential conflicts of interest.

Figure 2. An example of real-time prediction and interpretability of explainable artificial intelligence sepsis predictor (EASP) model. A, Explanation 
of how sepsis risk score is output for a positive prediction. The abnormality of temperature (Temp), Fio2, measurement interval of Fio2 (Fio2_interval), 
and lactate highlight the patient’s sepsis risk. While time between hospital and ICU admission (HospAdmTime) is relative normal. B, Hourly calculated 
EASP sepsis risk score and Sepsis-3 clinical definitions, as well as several features with the greatest contribution to risk scores at selected timestamps. 
Resp_window_mean indicates mean value of respiration rate in a 6-hr window. The timestamp of 6 hr prior to the onset time of sepsis (tsepsis) is defined as 
toptimal. From C to G, typical vital signs including heart rate (HR), oxygen saturation (O2Sat), Temp, mean arterial blood pressure (MAP), and respiratory rate 
(Resp) after forward-filling, and their feature impacts on prediction are shown over time. The measurements with feature impact above the threshold push 
the sepsis risk higher, whereas below push risk lower. The shaded area represents the targeted alert period.

http://journals.lww.com/ccmjournal
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