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A B S T R A C T   

Early detection of acute kidney injury (AKI) may provide a crucial window of opportunity to prevent further 
injury, which helps improve clinical outcomes. This study aimed to develop a deep interpretable network for 
continuously predicting the 24-hour AKI risk in real-time and evaluate its performance internally and externally 
in critically ill patients. A total of 21,163 patients' electronic health records sourced from Beth Israel Deaconess 
Medical Center (BIDMC) were first included in building the model. Two external validation populations included 
3025 patients from the Philips eICU Research Institute and 2625 patients from Zhongda Hospital Southeast 
University. A total of 152 intelligently engineered predictors were extracted on an hourly basis. The prediction 
model referred to as DeepAKI was designed with the basic framework of squeeze-and-excitation networks with 
dilated causal convolution embedded. The integrated gradients method was utilized to explain the prediction 
model. When performed on the internal validation set (3175 [15 %] patients from BIDMC) and the two external 
validation sets, DeepAKI obtained the area under the curve of 0.799 (95 % CI 0.791–0.806), 0.763 (95 % CI 
0.755–0.771) and 0.676 (95 % CI 0.668–0.684) for continuousAKI prediction, respectively. For model inter-
pretability, clinically relevant important variables contributing to the model prediction were informed, and 
individual explanations along the timeline were explored to show how AKI risk arose. The potential threats to 
generalisability in deep learning-based models when deployed across health systems in real-world settings were 
analyzed.   

1. Introduction 

Acute kidney injury (AKI) is a serious clinical syndrome character-
ized by a rapid decline in renal function caused by a variety of etiology 
and pathological mechanisms. AKI affects 10–15 % of hospitalized pa-
tients [1] and 30–60 % of critically ill patients in the intensive care unit 
(ICU) [2]. It is also reported that AKI serves as an independent risk factor 
for all-cause in-hospital death for patients with coronavirus disease 2019 
[3]. However, an audit in the UK found that nearly half of AKI diagnoses 
were recognized late or not at all [4]. While there are no specific in-
terventions for the prevention of AKI, early detection of AKI and 

implemented early “care bundles” such as fluid status optimization and 
avoidance of nephrotoxins may be associated with improved outcomes 
[5]. 

Recent markedly increased amounts of electronic health record 
(EHR) data and advances in the field of artificial intelligence (AI) have 
led to the rapid growth in developing AI-based algorithms for AKI early 
prediction [6,7]. Previous studies have developed models for predicting 
AKI at 24 h after admission [8,9] or 48 h after admission [10,11]. 
However, the medical condition of critically ill patients can significantly 
change during the following ICU stays. Integrating dynamic high- 
dimensional healthcare data for continuously assessing the AKI risk of 
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patients is required [12]. Traditional machine learning models for 
continuous AKI prediction require a priori knowledge of the temporal 
change states of the patients and do not capture complex interactions 
between trends in clinical variables. Deep learning-based models that 
could automatically learn relevant trends from EHR have been rapidly 
raised, among which the state-of-the-art work was reported in Nature by 
Google Deepmind [13]. However, the model was developed on specific 
populations from the US Department of Veterans Affairs, lacking inde-
pendent external validation, so whether it could generalize to new in-
stitutions remain unknown. It is reported that only 6 % of conducted 
studies performed external validation in research of applying AI in 
healthcare [14]. 

Clinical risk scores and simple logistic regression models are still 
commonly used in clinical practice due to understandability and trans-
parency. However, their performance is limited. Despite the enhanced 
performance of complex AI technology, they have not been integrated in 
part due to poor interpretability. In this respect, deep neural networks 
have been criticized as being the black box of algorithms [15]. There-
fore, understanding how the AI-based algorithms arrive at their pre-
dictions and getting insights into the exact changes in risk induced by 
certain characteristics of an individual patient are required for clinicians 
[16]. Methods such as layer-wise relevance propagation (LRP) [17] and 
integrated gradients (IG) [18] toward explaining deep neural networks 
have been proven successful on computer vision tasks, providing 
frameworks for explaining EHR data tasks especially acute critical 
illness prediction. 

Table 1 
Generated 152 features by category.  

Category Features 

Demographics 
[10] 

Age, Gender, Weight, Height, Chronic kidney disease, 
Diabetes, Chronic pulmonary disease, Congestive heart 
failure, Moderate/Severe liver disease, Current ICU 
length of stay 

Vital signs 
[7] 

Heart rate, Temperature, Systolic blood pressure, Mean 
arterial pressure, Diastolic blood pressure, Respiration 
rate, SpO2 

Laboratory values 
[27] 

pH, pO2, pCO2, FiO2, BaseExcess, Lactate, Glucose, 
Hematocrit, Hemoglobin, White blood cells, Platelet, 
Albumin, Aniongap, Bicarbonate, Blood urea nitrogen, 
Creatinine, Calcium, Chloride, Sodium, Potassium, 
International normalized ratio, Prothrombin time, 
Alanine aminotransferase, Alkaline phosphatase, 
Aspartate aminotransferase, Total bilirubin, Total 12-h 
urine output 

Empiric features 
[5] 

PO2/FiO2 ratio, Blood Urea Nitrogen (BUN)/SCr ratio, 
Body Mass Index (BMI), lowest SCr value in the last 48 h, 
total-12 h-urine output/weight/12 h (UO_12h_Rt) 

Informative missingness 
features 
[34] 

Binary indicator to distinguish between the missing value 
and an actual clinical event of each vital sign and 
laboratory values 

Trend features 
[34] 

The difference between the current record and the 
previous value of each vital sign and laboratory values 

Statistics features 
[35] 

For vital signs, statistics (maximum, minimum, median, 
standard deviation [SD], and differential SD) in a 24-h 
sliding window were counted  

Fig. 1. Illustration of the discrete-time analyses and prediction task. The research target was to continuously calculate the risk of occurring AKI in the next 24 h at a 
regular time interval τ before the onset of AKI. The prediction label l at each prediction time t was considered positive if AKI onset occurred within 24 h; other-
wise negative. 

Fig. 2. The proposed deep neural network architecture. SE = squeeze-and-excitation, Conv = convolution, ReLU = rectified linear unit, Batch Norm = batch 
normalization, AKI = Acute kidney injury. 
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In this study, we first developed a deep interpretable network for 
predicting AKI risk within 24 h for critically ill patients on a large ICU 
database. The proposed model aimed to help continuously detect 
physiological changes in patients, alert caregivers about patients at high 
risk of AKI and provide interpretable information for active treatments. 
We then compared the performance of this proposed model with three 
commonly used AI models on AKI prediction. After that, we validated all 
the developed AI models on two independent healthcare systems to 
explore the potential threats to the performance of AI-based algorithms 
when used in real-world settings. 

2. Methods 

2.1. Data sources 

Data used was sourced from three distinct databases with different 
EHR systems: Medical Information Mart for Intensive Care database-IV 
[19] (MIMIC-IV, Metavision system), eICU Collaborative Research 
Database [20] (eICU-CRD, Philips eICU system) and a local Chinese 

Database in Intensive Care (CDIC, Wiicare system). MIMIC-IV captured 
de-identified health information for 76,540 ICU stays admitted to the 
ICUs at Beth Israel Medical Center (BIMC) between 2008 and 2019; 
eICU-CRD collated a multi-center dataset throughout the United States 
comprising 200,859 ICU admissions from 2014 to 2015. CDIC collected 
data from 6262 patients admitted to the Department of Critical Care 
Medicine, Zhongda Hospital Southeast University, China, from January 
2018 to March 2021. 

The open-source databases MIMIC-IV and eICU-CRD have received 
ethical approval from the Institutional Review Boards (IRBs) at BIDMC 
and Massachusetts Institute of Technology, CDIC database was approved 
by the IRB of Zhongda Hospital Southeast University on December 31, 
2021 (2021ZDSYLL346–P01), conducted according to the principles 
outlined by the Helsinki Declaration, and a waiver for the requirement 
for informed consent was included in the IRB approval as all protected 
health information was de-identified. 

2.2. Study population 

We extracted data comprising all hospitalized adult patients who 
were first admitted to ICU for at least one day with at least an average of 
one urine output record every six hours and two serum creatinine (SCr) 
records during ICU admission. Patients were excluded if they had un-
dergone any dialysis procedure or were diagnosed with the end-stage 
renal disease before the ICU visit. Patients who developed AKI or 
required renal replacement therapy during the period of 24 h before 
entering the ICU and 24 h after ICU admission were also excluded. AKI 
was defined according to the Kidney Disease: Improving Global Out-
comes (KDIGO) criteria [21]. KDIGO accepts three definitions of AKI: 
[1] an increase in SCr of 0.3 mg/dL within 48 h; [2] an increase in SCr of 
1.5 times the baseline creatinine, which is known or presumed to have 
occurred within the previous 7 days; [3] or a urine output of <0.5 mL/ 
kg/h over 6 h. To obtain the baseline SCr, for patients admitted to the 
ICU, we also extracted all SCr values from laboratory events in the 
hospital system prior to ICU admission, so that the lowest value in the 
previous 7 days since the ICU admission could be calculated. However, if 
no SCr was recorded before ICU admission, the first SCr after ICU 
admission was used as the baseline SCr. In addition, the patient was 
required to be in the ICU for at least 6 h to achieve efficient urine output, 
and then we start using urine output to stage AKI. After that, AKI stages 
would be calculated at the time a clinical measurement of SCr or urine 
output was available. 

2.3. Data preprocessing and feature generation 

A total of 44 commonly available input variables were used in the 
model across various EHR systems, including demographics (age, 
gender, weight, height, comorbidity, current ICU length of stay), vital 
signs, and laboratory data (see Supplementary Table 1). Urine output 
information was integrated into 12 h (total 12 h urine output) as 
described by Koyner et al. [22]. All variables were time-ordered, and 
each ICU admission was represented by a sequence of clinical events. 
The event sequence was condensed into an hourly time window, and 
multiple events occurring within the same one-hour period were sum-
marized as the average numerical value. We included all the time points 
for both patients with AKI and non-AKI during the length of stay before 
the first AKI occurrence or ICU discharge. Patient records were trun-
cated to four weeks if they had an ICU length of stay for >28 days. Next, 
we employed one-hot encoding for the representation of categorical 
variables. All numerical features were standardized by removing the 
mean and scaling to unit variance after eliminating the outliers beyond 
the 1st and 99th percentile. For missing values during the event 
sequence, we carried forward the earlier available observation for 
imputation. If there was no available observation, we used the median 
values for the training data to fill in the remaining missing values. To 
avoid information leakage, the preprocessing operations were derived 

Table 2 
Baseline patient characteristics in the development and validation sets.  

Parametersa Development 
A 
(N = 17,988) 

Internal 
validation 
A 
(N = 3175) 

External 
validation B 
(N = 3025) 

External 
validation C 
(N = 2625) 

Age (years) 65 (53–76) 64 (53–76) 63 (51–74) 
*** 

65 (52–76) 

Male 10,283 (57.2) 1887 (59.4) 
* 

1784 (59.0) 1591 (60.6) 
*** 

Height (cm) 170 
(163–178) 

170 
(163–178) 

170 
(162–177)* 

168 
(160–172) 
*** 

Weight (kg) 75 (63–89) 76 (65–89) 
** 

77 (64–93) 
*** 

65 (59–70) 
*** 

Comorbidity      
Chronic 
kidney 
disease 

2325 (12.9) 376 (11.8) 193 (6.4) 
*** 

91 (3.5)***  

Diabetes 4734 (26.3) 884 (27.8) 817 (27.0) 604 (23.0) 
***  

Chronic 
pulmonary 
disease 

4449 (24.7) 798 (25.1) 562 (18.6) 
*** 

225 (8.6) 
***  

Congestive 
heart failure 

4345 (24.2) 764 (24.1) 498 (16.5) 
*** 

189 (7.2) 
***  

Moderate/ 
severe liver 
disease 

592 (3.3) 99 (3.1) 39 (1.3)*** 177 (6.7) 
*** 

Admission SOFA 
score 

4 (2–6) 4 (2–6) 3 (1–5)*** 5 (3–7)*** 

Admission 
creatinine (mg/ 
dL) 

0.9 (0.7–1.2) 0.9 
(0.7–1.3) 

1 (0.8–1.5) 
*** 

0.8 
(0.6–1.1) 
*** 

First day urine 
output (mL) 

2224 
(1600-3035) 

2240 
(1620- 
3115) 

2175 
(1500- 
3100) 

2890 
(2108- 
3913)*** 

ICU length of stays 
(days) 

2.3 (1.6–4.0) 2.3 
(1.6–4.0) 

2.6 
(1.8–4.2) 
*** 

7.1 
(3.1–14.8) 
*** 

Any AKI stage 6628 (36.8) 1177 (37.1) 1052 (34.8) 
* 

1279 (48.7) 
*** 

Hospital mortality 1125 (6.3) 196 (6.2) 181 (6.0) 166 (6.3)  
Non-AKI 382 (3.4) 58 (2.9) 67 (3.4) 34 (2.5)**  
Any AKI 
stage 

743 (11.2) 138 (11.7) 114 (10.8) 132 (10.3)* 

*p value between 0.01 and 0.05, **p value between 0.001 and 0.01; ***p value 
<0.001. Statistical analyses are conducted to describe the differences between 
the patients sourced from the development set and each validation set. 
A = Medical Information Mart for Intensive Care database, B = eICU Collabo-
rative Research Database, C = Chinese Database in Intensive Care, SOFA =
Sequential Organ Failure Assessment. 

a Data is in count (%) or median (Interquartile range, IQR). 
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from the training data and applied to other datasets. 
Apart from the 44 initial clinical variables, we also calculated 

another five features that were relevant for routine clinical practice, 
including PO2/FiO2 ratio, Blood Urea Nitrogen (BUN)/SCr ratio, Body 

Mass Index (BMI), lowest SCr value in the last 48 h, and total-12 h-urine 
output/weight/12 h (UO_12h_Rt). For the 34 vital signs and lab vari-
ables, we associated each with one binary indicator variable to enable 
the model to distinguish between the filled values and clinically 

Fig. 3. Box plot for densities of missing data for the clinical parameters across sets. One dot indicates the proportion of missing data events in hours accounts for the 
total length of ICU stay. A = Medical Information Mart for Intensive Care database, B = eICU Collaborative Research Database, C = Chinese Database in Intensive 
Care, BP = blood pressure. 

Fig. 4. Jensen-Shannon divergence (JSD) between two probability distributions of clinical parameters in the development set and each validation set. A = Medical 
Information Mart for Intensive Care database, B = eICU Collaborative Research Database, C = Chinese Database in Intensive Care, BP = blood pressure. 
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measured values. A value of 1 is assigned when there is a clinical record 
at a certain time point, and a value of 0 is assigned when there is no 
record, indicating a missing value [13]. This operation resulted in 34 
features. In addition, we also calculated the difference between the 
current clinical measurement and the previous clinical record as a form 
of simple trend features, thus resulting in another 34 features. For 
accessed vital signs, statistics (maximum, minimum, median, standard 
deviation [SD], and differential SD) in a 24-h sliding window were 
counted (a total of 35 features). Thus, we obtained a total of 152 features 
(for the full list, see Table 1). 

2.4. Model development 

The prediction target in this study was to continuously calculate the 
risk of occurring AKI in the next 24 h at a regular time interval τ before 
the onset of AKI, as illustrated in Fig. 1. We chose τ = 6 h with sug-
gestions from clinicians to avoid excessive alarms, which may result in 
alert fatigue. The observation window length was set as 24 h to capture 
as much information from laboratory tests as possible referred to the 
study by Song et al. [23]. We split the time series into the fixed 24-h 
window in a 6-h step after the first day, which means that we could 
make a prediction every 6 h based on the previous 24-h observed data (i. 
e., 24-h observation window) starting from the first day after ICU 
admission. 

The prediction label at each prediction time t is a binary variable that 
is positive if AKI occurs within a 24-h future time horizon. If no AKI state 
was recorded within the future time horizon, the label was treated as 
negative. Predictor variables from the prior 24-h observation window 
preceding each prediction in a six-hour interval were used to train our 
model. 

2.4.1. Neural network architecture 
A deep neural network referred to as DeepAKI was developed that 

operated sequentially over the EHR for critically ill patients. The algo-
rithm was designed with the basic framework of Squeeze-and-Excitation 

Networks (SENet) [24] with dilated causal convolution [25] instead of 
traditional one-dimensional convolution. SENet is a variation of a 
Resnet that has been demonstrated to be highly capable of performing 
visual or sequential tasks [24]. Fig. 2 gives a schematic view of our 
model. The model takes the observation sequence from patients as input 
and outputs the probability of AKI occurring in the next 24 h. Causal 
convolutions in the network premise that there can be no leakage from 
the future into the past, i.e., the key constraint for an output ŷt at time t 
is only dependent on elements from inputs x0, x1,…, xt in the previous 
layer. We also used dilated convolutions to achieve a long effective 
history size by skipping input values with a certain step (dilation factor). 
This allows a better knowledge learning from both the most recent in-
formation and the much earlier states for accessing whether a patient 
would develop AKI. 

The network consists of a dilated causal convolutional layer followed 
by three SE-Residual blocks with two dilated causal convolutional layers 
per block. Stacked dilated convolutions enable the network to have large 
receptive fields with just a few layers without greatly increasing 
computational costs. As displayed in Fig. 2, dilation factors set as d = [1, 
2, 1, 2, 1, 3, 1] with kernel size = 2 in this architecture enable output at 
the top level to yield a maximum receptive field of 12 h. The outputs of 
each convolutional layer with 64 filters are transformed using batch 
normalization [26] and fed into a rectified linear unit activation [27]. 
Spatial dropout [28] with a rate of 0.2 is added for regularization. In 
each block, the Squeeze-and-Excitation unit that adaptively recalibrates 
channel-wise feature responses by explicitly modeling in-
terdependencies between channels is integrated before the residual 
block is added to shortcut connections [24]. Outputs from the final 
spatial dropout are flattened to a single vector that is used as input to a 
final dense layer, followed by a sigmoid activation function. The output 
from the sigmoid activation is the probability of AKI risk in the next 24 h 
during ICU. 

The binary cross-entropy loss function is minimized using the Adam 
optimizer [29] with a mini-batch size of 200. We initialized the learning 
rate to 0.001 and reduced it by a factor of five if the validation loss 

Table 3 
Any AKI stage prediction performance for deepAKI and other models evaluated on internal and external validation populations.  

Validation 
population 

Number of patients and 24-h 
observation windows 

Metricsa 

(95 % 
CI) 

Proposed DeepAKI Neural 
Network 

Long short term 
memory 

Gradient boosting 
decision tree 

Logistic regression 

Internal 
validation A 
(MIMIC-IV) 

NoW = 20,271 
NoW-P = 4,327 (21.3 %) 

AUCb 0.799 (0.791–0.806) 0.786 (0.778–0.794) 0.783 (0.775–0.790) 0.759 
(0.752–0.767) 

SPCb 70.1 (68.4–71.7) 68.0 (66.3–69.8) 66.7 (64.9–68.3) 63.3 (61.8–64.7) 
PPVb 40.4 (39.1–41.8) 38.9 (37.7–40.3) 37.9 (36.7–39.1) 35.7 (34.8–36.6) 
NPVb 91.1 (91.0–91.4) 91.0 (90.7–91.1) 90.8 (90.5–91.0) 90.3 (90.1–90.5) 

NoP = 3175 
NoP-P = 1,177 (37.1 %) 

SENc 97.1 (96.4–97.9) 94.8 (93.8–95.8) 96.9 (96.3–97.7) 95.3 (94.4–96.3) 
SPCc 42.1 (39.8–44.3) 38.8 (36.8–41.3) 37.7 (35.2–40.0) 31.5 (29.5–33.6) 

External 
validation B 
(eICU-CRD) 

NoW = 23,195 
NoW-P = 4,145 (17.9 %) 

AUCb 0.763 (0.755–0.771) 0.750 (0.741–0.759) 0.739 (0.731–0.748) 0.712 
(0.704–0.721) 

SPCb 62.0 (60.0–63.7) 60.5 (58.2–62.9) 56.7 (55.2–59.2) 54.6 (52.8–57.1) 
PPVb 30.1 (29.0–31.0) 29.2 (28.1–30.6) 27.5 (26.7–28.5) 26.4 (25.7–27.5) 
NPVb 91.9 (91.7–92.1) 91.7 (91.5–92.0) 91.3 (91.0–91.6) 90.9 (90.7–91.3) 

NoP = 3025 
NoP-P = 1,052 (34.8 %) 

SENc 96.7 (95.9–97.5) 95.7 (94.7–97.0) 97.1 (96.2–97.9) 95.5 (94.5–96.6) 
SPCc 34.2 (31.8–36.4) 32.8 (29.5–35.8) 29.1 (27.4–31.7) 24.6 (22.7–26.4) 

External 
validation C 
(CDIC) 

NoW = 52,938 
NoW-P = 5,847 (11.0 %) 

AUCb 0.676 (0.668–0.684) 0.655 (0.648–0.662) 0.654 (0.647–0.662) 0.660 
(0.652–0.668) 

SPCb 45.4 (43.7–47.6) 44.4 (42.6–46.0) 42.3 (41.1–44.3) 45.6 (44.0–47.3) 
PPVb 14.6 (14.2–15.1) 14.3 (14.0–14.7) 13.9 (13.7–14.3) 14.6 (14.3–15.0) 
NPVb 93.6 (93.4–93.9) 93.4 (93.2–93.7) 93.2 (93.0–93.5) 93.6 (93.4–93.8) 

NoP = 2625 
NoP-P = 1,279 (48.7 %) 

SENc 98.7 (98.2–99.1) 98.4 (97.9–99.0) 99.5 (99.0–99.8) 98.7 (98.3–99.3) 
SPCc 7.9 (6.4–9.3) 5.4 (4.3–6.5) 3.7 (2.9–4.7) 6.7 (5.6–7.8) 

NoP = Number of Patients, NoP-P = Number of Positive Patients, NoW = Number of 24-h Observation Windows, NoW-P = Number of Positive Observation Windows, 
MIMIC = Medical Information Mart for Intensive Care database, eICU-CRD = eICU Collaborative Research Database, CDIC = Chinese Database in Intensive Care, AKI 
= Acute kidney injury, SEN = Sensitivity, SPC = Specificity, PPV = Positive predictive value, NPV = Negative predictive value, AUC = the Area Under the Curve. 

a Threshold-based performance metrics were calculated and expressed as a percentage (%) when setting the sensitivity at 75 % in window-wise. 
b Window-wise. Predictions were made when input 24-h observation windows in a six-hour interval. 
c Patient-wise. Patients would be referred to as positive cases (AKI patients) if there was at least one prediction of the 24-h observation window during their ICU stay 

whose probability was higher than the threshold and negative cases if not. 
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stopped improving for five consecutive epochs. The neural network 
weights are initialized as described by He et al. [30]. The training runs 
for 100 epochs, with the final model being the one with the best vali-
dation results during the optimization process. Early stopping [31] and 
both L1 and L2 regularization are used to avoid overfitting. We applied a 
class weight for weighting the loss function to handle class imbalances. 

2.4.2. Explanation module 
There were three commonly used methods for explaining deep 

neural networks, occlusion analysis based on Shapley values, IG based 
on Taylor expansions, and LRP based on deep Taylor decompositions. 
Compared to occlusion analysis, IG produces finer point-wise explana-
tions. In addition, the typical method, DeepSHAP [32], assumes that the 
input features are independent of each other and uses the linear 
composition rule in deep models, which could limit its usefulness in 
capturing the relationships between features and weaken the non-linear 
characteristics of deep neural networks. IG is also widely applicable to 
neural networks with complex structures and can be easily implemented 
in state-of-the-art deep learning frameworks such as PyTorch or Ten-
sorFlow, while LRP has a stronger requirement on the model structure. 
Therefore, we chose the IG method to interpret how the network works 
over the inputs and make the AKI prediction. For further reading on the 
methods and applications of explaining deep neural networks, see the 
review by Samek et al. [33]. IG highlights the feature which has the 
steepest local slope with respect to the output. Suppose the proposed 
network function f and input v, IG assigns an attribution value φi to the i- 
th feature by accumulating gradients interpolated in a way between the 

baseline b which represents the “missingness” of feature input and the 
specific input. The way can be represented by a path function γ(α) from 
the baseline b to the input v, where α ∈ [0,1], and γ(0) = b, γ(1) = v. A 
straight-line path was specified in IG, i.e., γ(α) = b+ α(v − b). Therefore, 
we derive that: 

φi(f, v, b) = (vi − bi)×

∫ 1

α=0

δf(b + α(v − b) )
δvi

dα 

Therefore, the attribution (importance score) of a specific feature can 
be accessed when computing the change output of the network starting 
with the baseline to the current value by integrating over a path and 
averting the problem of the local gradients in neural networks being 
saturated. However, the way to choose the baseline remains a problem. 
To avoid choosing a specific baseline, we average over multiple base-
lines to follow the expected gradients proposed by Erion et al. [34]. 
Assumpt that given a baseline distribution D, φi is redefined as the 
formula: 

φi(f, v;D) =

∫

b
φi(f, v, b)× pD(b)db 

where pD represents the density function. Suppose α obeys the uni-
form distribution U between 0 and 1, expected gradients reformulate the 
integrals above as expectations: 

φi(f, v;D) = Eb∼D,α∼U(0,1)

[

(vi − bi)×
δf(b + α(v − b) )

δvi

]

In this paper, to compute feature attribution values in practice, we 
simply use k samples from the given populations of the development set 
as random samples from D and obtain the formula as follows: 

φi(f, v, k;D) =
1
k
∑k

j=1

(
vi − bj

i
)
×

δf
(
bj + αj

(
v − bj) )

δvi 

We apply two aspects to visualize the explanations, including indi-
vidual interpretability and global understanding. By computing IG, in-
dividual interpretability assigns an attribution value to each feature for 
each 24-h observation window at every prediction time point during ICU 
stay for a single patient. It explains how the model outputs probability 
and reminds us of relevant risk factors. Global understanding tells the 
most relevant clinical parameters for predicting AKI after learning from 
all given populations. 

2.5. Experiments setup 

Patients in the MIMIC-IV database were randomly divided into a 
development set (85 %, renamed Development A, consisting of a 70 % 
training dataset and a 15 % hyperparameter tuning dataset) for training 
and an internal validation set (15 %, Validation A) used to provide an 
unbiased evaluation. To compare the performance of the proposed 
approach, models including an attention-based Long Short Term Mem-
ory (LSTM) neural network [8,35], a Gradient Boosting Decision Tree 
(GBDT) model [22], and a discrete-time logistic regression (LR) 
approach [36] that have commonly been used for AKI prediction were 
also trained. All the models' hyperparameters were optimized using the 
grid search method performed on the 15 % hyperparameter tuning 
dataset (Supplementary Table 2). After that, we validated all the con-
structed AI models on two independent healthcare systems. In order to 
keep the size of patients and the total of predictions in hours as 
consistent as possible with the internal validation populations and make 
a horizontal comparison for performance, randomly 15 % of patients 
from eICU-CRD were used for one external validation (Validation B). 
The entire CDIC cohorts were used for another external validation 
(Validation C). The data for a single patient was assigned to one inde-
pendent set to avoid information leakage. 

To describe the differences of clinical parameters between the pa-
tients sourced from the development set and each validation set, 

Table 4 
Model performance of the area under the curve across different clinical 
subgroups.  

Subgroup name Internal 
validation A 
(N = 3175) 

External validation B 
(N = 3025) 

External 
validation C 
(N = 2625) 

Age (years)  
18–45 0.793 

(0.769–0.817) 
0.720 (0.697–0.743) 0.627 

(0.605–0.647) 
45–65 0.784 

(0.771–0.796) 
0.772 (0.757–0.786) 0.687 

(0.674–0.699) 
65–85 0.797 

(0.786–0.809) 
0.763 (0.751–0.775) 0.694 

(0.682–0.705) 
> 85 0.753 

(0.723–0.784) 
0.756 (0.725–0.786) 0.684 

(0.656–0.713) 
BMI (kg/m2)  

< 18.5 0.744 
(0.674–0.812) 

0.727 (0.687–0.766) 0.616 
(0.583–0.647) 

18.5–25 0.796 
(0.782–0.809) 

0.773 (0.758–0.786) 0.668 
(0.659–0.678) 

25–30 0.782 
(0.769–0.795) 

0.755 (0.738–0.770) 0.668 
(0.651–0.683) 

> 30 0.806 
(0.791–0.819) 

0.758 (0.743–0.772) 0.672 
(0.642–0.701) 

Gender  
Female 0.794 

(0.783–0.806) 
0.757 (0.743–0.771) 0.695 

(0.683–0.708) 
Male 0.801 

(0.791–0.811) 
0.767 (0.756–0.777) 0.660 

(0.652–0.670) 
At risk groups  

CKD 0.772 
(0.749–0.794) 

0.707 (0.672–0.739) 0.765 
(0.731–0.799) 

Diabetes 0.809 
(0.796–0.823) 

0.775 (0.757–0.791) 0.727 
(0.712–0.741) 

Trauma 0.793 
(0.774–0.813) 

0.772 (0.741–0.801) 0.652 
(0.634–0.670) 

Sepsis 0.794 
(0.783–0.805) 

0.779 (0.756–0.802) 0.646 
(0.632–0.660) 

Cardiac 
surgery 

0.773 
(0.749–0.798) 

0.793 (0.752–0.832) 0.802 
(0.674–0.903) 

A = Medical Information Mart for Intensive Care database, B = eICU Collabo-
rative Research Database, C = Chinese Database in Intensive Care, AKI = Acute 
kidney injury, BMI = Body mass index, CKD = Chronic kidney disease. 
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statistical analyses were conducted by using a chi-square test for cate-
gorical variables and the two-sided Wilcoxon rank-sum test for all 
continuous variables. We also applied the Jensen-Shannon-Divergence 
(JSD) to assess the similarity of distributions for each clinical mea-
surement between the development set and validation set. JSD is an 
asymmetric metric in probability theory and statistics that can measure 
the relative entropy or difference in information represented by two 
distributions. It can be used to calculate the distance between two data 
distributions, providing insight into how different the two distributions 

are from each other. The JSD value falls between 0 and 1, the closer to 0, 
the more similar the two distributions are. 

The discrimination performance of the model was mainly assessed by 
the area under the curve (AUC) after making all predictions of the 24-h 
observation window (window-wise) from the validation populations. 
The risk probability threshold was obtained when setting the sensitivity 
at 75 % in window-wise, so we can report the threshold-based perfor-
mance metrics of specificity, positive predictive value (PPV), and 
negative predictive value (NPV), respectively. In addition, in order to 

Fig. 5. An illustrated example of individual explanation at the prediction time 24 h before the stage 1 AKI onset for one male patient who was 71 years old with 
complications of chronic kidney disease and diabetes. The time point of zero above represents the prediction time, and DeepAKI warns of an AKI risk of 71.6 %. The 
parameter with a feature attribution value above zero pushes the AKI risk higher, otherwise lower. The Grey dotted line refers to the time of risk starts to increase 
rapidly. Dots that are recorded on the blue dotted line along the timeline of a parameter indicate the actual clinical events rather than imputation values. AKI = acute 
kidney injury, SCr = serum creatinine, ΔSCr = change in SCr, UO_12h_Rt = total-12 h-urine output/weight/12 h, UO_Flag = binary indicator to distinguish between 
the imputation value and actual measurement of urine output, SBP_24h_max = maximum of systolic blood pressure in the last 24 h, CKD = chronic kidney disease, 
ΔBUN = change in blood urea nitrogen. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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know how many patients the model can successfully predict or detect, 
we treated the patients as positive cases (AKI patients) if there was at 
least one prediction of the 24-h observation window during their ICU 
stay whose probability was higher than the threshold and negative cases 
if not. Therefore, the AKI/non-AKI predictions for all patients could be 
identified patient-wise, so that the metrics of sensitivity and specificity 
in patient-wise can be reported [37]. We calculated the 95 % CIs for all 
the performance measures using bootstrapping (1000 stratified boot-
strap replicates). 

3. Results 

3.1. Patients description 

A total of 17,988 patients were enrolled in the development set A, 
with 6628 (36.8 %) of whom developed at least stage 1 AKI. The vali-
dation sets at A, B, and C comprised 3175 patients (1177 [37.1 %] any 
AKI), 3025 patients (1052 [34.8 %] any AKI), and 2625 patients (1279 
[48.7 %] any AKI), respectively (Table 2). Hospital mortality of patients 
who were diagnosed with AKI was significantly higher than those who 
did not on all the validation populations ([10.3–11.7 %] vs [2.5–3.4 %]). 
Compared with the patients from validation A and B, populations from 
validation set C had significantly longer median (IQR) ICU lengths of 
stay (7.1 [3.1–14.8] vs 2.3 [1.6–4.0] vs 2.6 [1.8–4.2] days), and were 
diagnosed with AKI much later (3.7 [1.9–6.6] vs 1.6 [1.3–2.4] vs 1.7 
[1.3–2.7] days). The proportion of missing data accounting for the total 
length of ICU stay in hours for each vital sign and laboratory values were 
computed (Fig. 3). Most vital signs were recorded on an hourly basis in 
most patient records, while most laboratory values were sampled on a 
daily basis. There were large differences in distributions for the majority 
of vital signs and laboratory values between the development set and 
external validation sets according to the statistical analysis (Supple-
mentary Table 1) and JSD results indicated (Fig. 4). 

3.2. Model performance 

Of the four developed AI models for the AKI prediction in internal 
validation A, DeepAKI performed best with an AUC of 0.799 (95 % CI 
0.791–0.806) compared with 0.759–0.786 for the other models. In 

external validation, DeepAKI still performed best with an AUC of 0.763 
(95 % CI 0.755–0.771) in validation B and 0.676 (95 % CI 0.668–0.684) 
in validation C. In contrast, the AUC performance of the other models 
was 0.712–0.750 in B and 0.654–0.660 in C. After setting the sensitivity 
at 75 % (window-wise) to obtain the risk probability threshold, we got a 
specificity of 70.1 % in A, 62.0 % in B, and 45.4 % in C. The ratio of false 
to true alarms of any AKI episodes was approximately 1.5 (PPV 40.4 %) 
and 2.3 (PPV 30.1 %) when performed on validation A and B. However, 
the ratio of false to true alarms is about 5.8 (PPV 14.6 %), which was 
high on the independent set C. In addition, performance in patients' 
statistics (patient-wise) showed that DeepAKI identified the majority of 
the AKI patients in all three healthcare systems (sensitivity ≥96.7 %). 
Still, it falsely identified many non-AKI patients as AKI, especially on the 
external validation C (specificity = 7.9 %) (Table 3). 

For AKI prediction at-risk groups, DeepAKI performed better in di-
abetics patients with AUC of 0.809 (95 % CI 0.796–0.823) for whom 
from validation set A, while it performed better for patients after cardiac 
surgery from both validation set B with AUC of 0.793 (95 % CI 
0.752–0.832) and validation set C with AUC of 0.802 (95 % CI 
0.674–0.903) (Table 4). 

3.3. Model interpretation 

We first illustrated the individual interpretability for a single patient 
at the prediction time point 24 h before the stage 1 AKI onset (Fig. 5). 
The top 10 relevant clinical parameters ranking by an average magni-
tude of feature attribution values contributed to stage 1 AKI with a risk 
score of 71.6 % were shown. Parameter values and the corresponding 
feature attribution values along the timeline in this 24-h observation 
window were displayed to reflect the real-time state change of the pa-
tient. As for global understanding, the top 10 important features that the 
predictive model contributed to any AKI prediction were summarized in 
Fig. 6. The visible interpretability summary of feature attribution across 
patients revealed that oliguria, older, overweight, and hypotension pa-
tients were consistent with higher AKI risk, as shown in the right column 
of the figure. 

Fig. 6. Summary of feature attribution for the employed clinical parameters. a, global parameter importance of the top 10 features. b, beeswarm plots show 
parameter attribution values across patients for the top 10 features, where each dot indicates the attribution value for a one-hour sample. When summarizing the 
interpretability, the temporal relevance variations are simplified and ignored, treating all data points at different times equally. When multiple dots fall on the same x 
position, they are stacked to show density. Parameters with positive attribution values push the AKI risk higher, while negative push the risk lower. Longtails indicate 
features are extremely important for specific patients. AKI = Acute kidney injury, UO_12h_Rt = total-12 h-urine output/weight/12 h, UO_Flag = binary indicator to 
distinguish between the missing value and actual measurement of urine output, UO_12h = total 12 h urine output, SCr = serum creatinine, ΔSCr = change in SCr, 
SBP = systolic blood pressure, CHF = congestive heart failure, ΔUO_12h = change in UO_12h, HR = heart rate, BUN = blood urea nitrogen. 
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4. Discussion 

In this retrospective study, we built a deep interpretable network 
called DeepAKI learning from the collected sequential EHR data for 
continuously predicting the risk of developing AKI in the next 24 h at six- 
hour intervals. Results indicated that DeepAKI showed superior perfor-
mance compared with LSTM, GBDT, and LR on both the internal and 
external validation populations. The proposed DeepAKI could provide 
quantitative and explainable risk factors contributing to the model 
prediction for a single patient, which could help improve the practicality 
of clinical decision support. We included both an independent US- 
sourced database and a China-sourced dataset with larger population 
heterogeneity for external validation to simulate deploying predictive 
models to real-world settings. Performance deterioration was found 
when deployed all the predictive models to external validation sets, 
especially the Chinese Database in Intensive Care. 

Previous studies on AKI early prediction that had a fixed prediction 
time [8–11] limited their clinical practicalities. Daily prediction might 
delay the judgment of AKI risk [23,38], while hourly prediction would 
result in repeated alerts causing alert fatigue [36]. In this study, the 
model was designed to generate predictions every six hours, helping 
decrease the overall possible number of alerts when effectively tracking 
the disease progression rate of AKI [13,39]. Results demonstrated that 
DeepAKI outperformed the commonly used models on the AKI contin-
uous prediction. Even after removing the most important five features 
UO_12h_Rt, UO_Flag, UO_12h, Weight, and ΔSCr, the results still showed 
acceptable model performance. The AUC (95 % CI) for validation A, B, 
and C were 0.761 (0.752–0.769), 0.713 (0.704–0.721), and 0.635 
(0.627–0.642), respectively, which showed the DeepAKI's robustness. In 
addition, to the best of our knowledge, no study has evaluated the 
performance of AI-based models for continuous AKI prediction to 
multiple-sourced databases, especially from another country. Although 
previous AKI prediction models have achieved an AUC ranging from 
0.73 to 0.78 in internal validation studies, and 0.60–0.76 in external 
validation studies [22,23,36,40], populations were from the same re-
gion or using the same EHR system. 

Our experimental results demonstrated the performance deteriora-
tion and drew our attention to the following potential threats to gen-
eralisability in AI-based models in healthcare. First, the population 
heterogeneity. For example, patients from healthcare system A were 
more likely to have chronic kidney disease (CKD), chronic pulmonary 
disease, and congestive heart failure, while patients from C seemed to 
have more liver disease. Higher admission SOFA scores and longer ICU 
stay for patients from C were also observed. Nevertheless, they were 
diagnosed with AKI much later due to the higher urine output during the 
first day, and lower admission SCr, indicating kidney disease progresses 
relatively slowly. Second, software diversity of EHR for data capture. 
There is a data transformation problem for mapping local concepts to 
common terminology, especially across different EHR systems. For 
example, comorbidities were extracted in the public database A and B 
based on the International Classification of Diseases codes. However, we 
matched the Chinese field to find the comorbidities in local set C due to 
the incomplete disease recording mechanisms, which might underesti-
mate the number of patients with comorbidities. Third, differences in 
clinical practice between regions. Caregivers at the bedside from C 
recorded data more frequently, resulting in relatively few missing values 
for vital signs, as shown in Fig. 3. The problems above caused the de-
viation of the data distribution and led to the decline in the general-
ization performance of the AI algorithm. 

Another strength was that we first used the IG method computing the 
feature attribution values to uncover the black box of the proposed deep 
neural network for acute critical illness prediction. Previous studies 
explained AI models in predicting AKI or other critical illness risks using 
Wald z-scores of covariates [36], gain [22], SHapley Additive exPlana-
tion (SHAP) values [23,41–43], attention mechanism [8], and LRP [44]. 
However, most of them either captured the overall behaviors of the 

model lacking individual explanations or mainly explained in tree-based 
models. The proposed DeepAKI could not only inform clinically relevant 
important variables contributing to the model prediction (Fig. 6) but 
also help clinicians easily understand why a model is predicting a certain 
diagnosis for a single patient. As the example shown in Fig. 5, we could 
successfully predict the AKI risk 24 h before the stage 1 AKI onset and 
remind how the risk rose. For the dynamic parameters in this 24-h 
observation window, especially the last few hours, it can be seen that 
the increase of SCr from 3.1 mg/dL to 3.3 mg/dL, BUN increased by 4 
mg/dL and the continuous decrease in urine output highlight the AKI 
risk. Followed by the static demographic variables such as weight, CKD, 
and age raise more attention during this period. 

Demystifying the prediction model not only helped us understand 
the model better but also helped further analysis of the source of per-
formance heterogeneity [23]. For example, the feature of binary indi-
cator to distinguish between the missing value and actual measurement 
of urine output (UO_Flag) was important in predicting AKI learning from 
populations in healthcare system A. However, urine output was recor-
ded almost every hour in healthcare system C, so UO_Flag could not 
provide enough information for alerting AKI, which resulted in model 
performance degradation. When we removed the type of Informative 
Missingness Features (total of 34 features) and retrained the model, 
results indicated that the AUC (95 % CI) of the validation C can be 
improved from 0.676 (0.668–0.684) to 0.692 (0.685–0.699), even 
though the AUC of validation A dropped from 0.799 (0.791–0.806) to 
0.787 (0.779–0.794), and the AUC of validation B dropped from 0.763 
(0.755–0.771) to 0.748 (0.740–0.757). 

This study was subject to some limitations. First, the BIMC devel-
opment cohort spans from 2008 to 2019, during which time there may 
have been changes in the identification of AKI and data collection in 
inpatient settings. We also did not consider the impact of drugs and 
treatments such as diuretics on the urine output, which could mislead 
the AKI label. In addition, the partial absence of urine output records 
and the use of the first SCr after ICU admission as the baseline in some 
patients may affect the accuracy of AKI staging. Second, we only 
included information from demographics, vital signs, and laboratory 
values which limited the model performance and were unable to dig out 
more potential factors that lead to AKI. Further studies are going to 
collect more information, such as management with drugs and intra-
venous fluids, pressors, etc. Third, although we successfully used the IG 
method to explain the deep learning model, prospective studies are 
needed to verify how to apply it in clinical decision-assisted systems to 
provide truly helpful information. Additionally, the IG method only 
demonstrated learned correlations that were already established 
knowledge in the clinical field. Future studies are required to use this 
technology to discover new correlations and capture potential interac-
tion effects between features. Fourth, the relatively high false alarm rate 
still brings difficulties in applying the model in clinical practice. An 
effective false alarm handling mechanism needs to be proposed for 
continuous critical illness prediction tasks in further research. Lastly, the 
problem of model generalizability was not well solved in this study. 
Further study is going to collect more data from multiple hospital sys-
tems to improve the model's performance. Techniques from transfer 
learning [45] or federated learning [46] that might improve model 
generalizability by adjusting data distribution shifts or pretraining will 
also be explored in further research. Nevertheless, this study highlights 
that when deploying across hospital institutions, it is important to un-
derstand the heterogeneity and minimize differentiation between fea-
tures as much as possible. 

5. Conclusions 

The proposed model DeepAKI that continuously predicts AKI ach-
ieved superior performance compared with three commonly used AI 
algorithms. When externally validated all the AI algorithms, the results 
got deteriorated, which drew our attention to the potential threats to the 
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generalisability of AI-based models when deployed across health sys-
tems in real-world settings. The model interpretability proposed could 
help improve clinical understanding of AKI risk at the global and indi-
vidual patient levels and explain the model deterioration for further 
improvement. 
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